A Perron-Frobenius Theorem for Positive Quasipolynomial Matrices Associated with Homogeneous Difference Equations

نویسندگان

  • Bui The Anh
  • Duong Dang Xuan Thanh
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

A primer of Perron–Frobenius theory for matrix polynomials

We present an extension of Perron–Frobenius theory to the spectra and numerical ranges of Perron polynomials, namely, matrix polynomials of the form L(λ) = Iλ − Am−1λm−1 − · · · − A1λ− A0, where the coefficient matrices are entrywise nonnegative. Our approach relies on the companion matrix linearization. First, we recount the generalization of the Perron–Frobenius Theorem to Perron polynomials ...

متن کامل

A Note on the Proof of the Perron-Frobenius Theorem

This paper provides a simple proof for the Perron-Frobenius theorem concerned with positive matrices using a homotopy technique. By analyzing the behaviour of the eigenvalues of a family of positive matrices, we observe that the conclusions of Perron-Frobenius theorem will hold if it holds for the starting matrix of this family. Based on our observations, we develop a simple numerical technique...

متن کامل

The Perron-frobenius Theorem for Homogeneous, Monotone Functions

If A is a nonnegative matrix whose associated directed graph is strongly connected, the Perron-Frobenius theorem asserts that A has an eigenvector in the positive cone, (R). We associate a directed graph to any homogeneous, monotone function, f : (R) → (R), and show that if the graph is strongly connected then f has a (nonlinear) eigenvector in (R). Several results in the literature emerge as c...

متن کامل

Notes on the Perron-frobenius Theory of Nonnegative Matrices

By a nonnegative matrix we mean a matrix whose entries are nonnegative real numbers. By positive matrix we mean a matrix all of whose entries are strictly positive real numbers. These notes give the core elements of the Perron-Frobenius theory of nonnegative matrices. This splits into three parts: (1) the primitive case (due to Perron) (2) the irreducible case (due to Frobenius) (3) the general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007